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Abstract 

STM Studies of Oxygen Etching of Silicon Surfaces 

By Mary L. Willis, M.S. 

A thesis submitted in partial hlfillment of the requirements for the degree of Master of 

Science at Virginia Comnlonwealth University, 20053. 

Major Director: Alison A. Baski, Associate Professor, Department of Physics 

This study uses atomic force microscopy (AFM) to investigate the oxygen etching 

behavior of the following silicon surface orientations: (OOl), (1 1 I), (1 13), (5 5 12) and 

(1 12). Most etching was performed at sample temperatures between 650 "C and 800 "C, 

at pressures of 3.3 x 1 oW7 and 1 . 5 ~  Torr, and at an exposure of 200 L. Surface 

orientation strongly influences the morphology resulting from extended etching. The 

surface orientations that are stable against etching and remain flat include Si(001), 

Si( l l l ) ,  and Si(113). Such surfaces also include island structures, which result from 

etching around oxide-induced pinning sites. The density of these islands increases at 

lower temperatures and higher pressures. The surface orientations that are unstable 

against oxygen etching and facet to other orientations include Si(5 5 12) and Si(112). 

These surfaces form sawtooth facets that are primarily composed of more stable (1 11) 

and (1 13) planes. By coi~trolling the temperature and exposure during oxygen etching, it 

is therefore possible to form a variety of surface morphologies. 
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Chapter 1: Introduction 

The interaction of oxygen with Si surfaces is of fundamental importance in Si-based 

semiconductor research and technology, since oxygen interactions with Si can degrade 

device performance. Much research has already gone into this area to study the process 

of silicon ~xidation."~ The basic chemical reaction is Si + 0 2  3 Si02 for oxidation and 

2Si + 0 2  3 2Si0 for etching (see Fig. 1.2); however, the intermediate steps are not yet 

clearly ~ n d e r s t o o d . ~ - ~ ~  Surface defects and step edges further complicate matters with 

their enhanced reactivity.13 As the drive to create smaller devices continues, the need to 

understand and ultimately control the reaction of 0 2  with Si surfaces remains an 

important issue. 

Up to this point, most studies have concentrated on the low-index 

Si(11 1)2110124-34 surfaces. Such studies have primarily examined oxygen reactions at low 

exposures and temperatures using the technique of scanning tunneling microscopy 

(STM). In this work, we use the technique of atomic force microscopy (AFM) to study 

oxygen etching on a much larger variety of silicon orientations at higher exposures. The 

use of AFM instead of STM allows the efficient acquisition of large-scale surface 

morphology data. 

1.1 Experimental Details 

These experiments were carried out using commercially prepared silicon samples cut 

from wafers oriented to within 0.5" of the (OOl), (1 1 I), (1 12), (1 13), or (5 5 12) 

orientations (see Figure 1.3). The samples were prepared in an ion-pumped, ultra-high 

vacuum (UHV) system (P < 5x10-lo Torr). First, the native oxide layer on the Si sample 

was removed and a clean surface obtained. This was accomplished by preheating the 

sample holder to remove contaminants, then passing direct current through the Si sample 

to heat it to 1250 "C for -10 s (P < 1 x lo-' Torr). The temperature was measured by an 
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infrared pyrometer. The sample was then exposed to oxygen by leaking research grade 0 2  

(99.995%) into the main chamber from a back-filled mini-chamber ( 5 x 1 0 ~ ~  Torr), which 

had been previously pumped to 5x lop6 Torr. During 0 2  exposure, the sample was held at 

temperatures between 650 and 800 "C and then exposed to 200 Langmuirs (L) (1 L is 

equivalent to 1 s exposure at 1 x 1 0 ~  Torr). The pressures used in this study were chosen 

to be 3 . 3 ~ 1 0 - ~  Torr and 1 . 5 ~ 1 0 - ~  Torr, because they required reasonable exposure times 

and were sufficiently low that the UHV chamber pressure could recover after exposure. 

Once the exposure was complete, the sample current was immediately turned off to 

quench the sample. After cooling to room temperature, the Si samples were then removed 

from the UHV chamber and examined using atomic force niicroscopy (AFM). The 

samples presented in this study were prepared over a period of 18 months. 

1.2 Atomic Force Microscopy (AFM) 

The atomic force microscope is a scanning probe microscope based on the detection 

of forces between a tip and sample surface. This technique produces images of the 

sample surface topography ranging in size from l x  1 pm2 to lOOx 100 p i 2 .  The tip is at 

the end of a micro-cantilever with a very small force constant (see Fig. 1.1 ). A laser 

focused on the back of the cantilever is used to track the vertical motion of the tip as it 

rasters across the surface. The laser reflects onto a two-sector photodiode that is part of a 

feedback circuit. This circuit adjusts the vertical height of the tip in order to maintain a 

constant force between the tip and sample. The tip height (or z-piezo voltage) is recorded 

during scanning to produce a topographic image of the surface. In this study, tappingTM 

mode was used in order to minimize sample daniage and to obtain higher imaging 

resolution. In this mode, the tip vibrates at its resonant frequency and "taps" the surface, 

where the change in oscillation amplitude is monitored. 
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1.3 Oxygen Etching of Silicon 

Exposure of a Si substrate to research-grade 0 2  can produce oxide growth, etching or 

both, depending on the substrate temperature and oxygen pressure. At lower temperatures 

and higher exposures, oxidation dominates with oxygen and Si bonding to create Si02 

(see Fig. 1.2). At higher temperatures and lower exposures, etching dominates with the 

formation of volatile SiO that desorbs from the surface.35 Seiple and Pelz have proposed 

a phase diagram,21 which indicates the pressure-temperature conditions necessary for 

etching vs. oxide growth. They do not propose a well-defined boundary between the 

etching and nucleation regimes, rather, a transition region exists where both processes 

occur. This transition region leads to interesting changes in the surface morphology and 

is the subject of this study. 

Pressure and temperature are critical variables during oxygen etching because they 

determine the arrival rate of 0 2  and how quickly it diffuses across the surface. The rate at 

which 0 2  hits the surface is determined by pressure, where a higher pressure yields a 

higher O2 arrival rate. The rate at which 0 2  diffuses across the surface is determined by 

temperature, where a higher temperature leads to faster surface diffusion. If the pressure 

is high and the temperature is low, then the arrival rate of 0 2  is fast compared to the 

diffusion rate. Diffusing atoms are more likely to encounter other atoms and nucleate an 

oxide region. If, on the other hand, the pressure is low and the temperature high, then the 

diffusion rate is high compared to the arrival rate. The diffusing atoms are more likely to 

form volatile SiO and etch the surface. In addition to the relative dominance of oxide 

growth vs. etching, pressure and temperature also determine where reactions occur. If 

diffusion lengths are large, then there is a higher probability that atoms will form oxide or 

etch at the more reactive step edges. 

In this study, five Si surface orientations are examined (see Fig. 1.3). These 

orientations are classified as low-index, Si(001) and Si(1 1 1), and high-index, Si(113), 



www.manaraa.com

Si(5 5 12) and Si(112). Previous studies have shown that high-index Si surfaces such as 

Si(5 5 12) are unstable when exposed to metals (Gd, Au) and will preferentially f o m ~  

lower-energy planes such as Si(ll1) and Si(113). 36,37,38 We will see that this is also the 

case for oxygen etching of such a surface.39 
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1.4 Chapter 1 Figures 

Photodiode 
Detector 

Sample 

Fig. 1.1: Schematic of atomic force microscopy. 
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SiO, 

- + \ -  _ I _  ..'% . 

Oxide nucleation Etching 

Fig. 1.2: Schematic showing two possible reactions of O2 incident on a Si surface 
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Fig. 1.3: Stable silicon orientations in the (001) to (1 11) family of surfaces, with 
"thumbnail" STM images of each surface reconstruction 
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8 

Chapter 2: Etching of Stable Si(OOl), Si( l l l ) ,  and Si(113) Surfaces 

Previous research has shown that at low exposure and temperature (50 L and 700 "C), 

most Si surface orientations appear similar after oxygen etching. However, at high 

exposure and temperature (200-400 L and 800 "C), the surfaces can have significantly 

different large-scale morphologies.39 This study focuses on the surface morphologies that 

result from extended etching of five different Si orientations: (OOl), ( I l l ) ,  (113), 

(5 5 12), and (1 12). The exposure is held constant at 200 L with a range of temperatures 

from 650 to 800 "C and pressures of 3 . 3 ~ 1 0 ~ ~  and 1 . 5 ~  Ton-. In this chapter, those 

surface orientations that remain stable after extended etching are discussed. These 

orientations include the low-index Si(001) and Si(ll1) surfaces, as well as the stable 

high-index Si(113) surface. All of these surfaces form islands during etching that result 

from oxide-induced pinning sites (see Fig. 2.1). 

2.1 O2 Etching of Si(001) 

A summary of the temperature dependence for etching of Si(001) is shown in Figs. 

2.2 and 2.3. In this study, oxygen exposure at the lowest sample temperature of 650 "C 

results in a uniform oxide layer (see Fig. 2.2a). Significant etching does not occur until 

-700 "C, where islands are formed by etching around oxide-induced "pinning" sites. 

Such pinning sites prevent the desorption of Si in that region, resulting in islands that 

increase in height with increased etching time. The islands form uniformly across the 

surface, with their density decreasing as the temperature increases due to fewer pinning 

sites. For the higher pressure conditions ( 3 . 3 ~ 1 0 ~ '  Torr), the island density ranges from 

150 pm-2 at 700 "C to 13 pm-* at 800 "C. For the lower pressure conditions ( 1 . 5 ~  

Torr), the density ranges from 139 pmP2 at 700 "C to 5 pm-* at 800 "C. Notice that the 

island density on the higher pressure samples is larger at a given temperature than that on 

the lower pressure samples. This occurs because the arrival rate of oxygen molecules is 
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greater at higher pressures and results in a higher density of diffusing species on the 

surface. As a result, the oxygen species interact more frequently to nucleate a higher 

density of oxide-induced pinning sites. 

The size of the islands appears to be uniform at a given pressurelteniperature 

condition, but the island size increases for higher temperatures. This size effect is 

presumably because surface etching is more prevalent at higher teniperatures and a larger 

oxide-induced pinning site is necessary to stabilize an island. Island diameters increase 

froni 40 nm at 700 "C to 140 nm at 800 "C at higher pressures, and froni 30 nm at 700 OC 

to 200 nm at 800 "C at lower pressures. The average height of the islands also increases 

with temperature, e.g. from -1.5 nm at 700 "C to -2 nrn at 800 "C, consistent with the 

higher etching rate at higher teniperatures. Finally, at higher temperatures the island 

shape becomes more well-defined with edges along the two-fold symmetry directions of 

the Si(001) surface. 

2.2 O2 Etching of Si(ll1) 

In contrast to Si(001), the island morphology produced by etching of Si(ll1) 

noticeably changes as a function of temperature. At the lower temperatures of 650 "C and 

700 "C, islands preferentially nucleate along step edges and domain boundaries, leading 

to an inhomogeneous island density (Fig. 2.4 a,b,e,f). At 750 "C and 800 "C, however, 

islands of similar size and shape honiogeneously cover on the surface (Fig. 2.4 c,d,g,h). 

Although the island density is honiogeneous, the islands preferentially occur along step 

edges, pinning the retraction of steps in their vicinity. In fact very few islands are found 

within the terraces, unlike at the lower temperatures. As expected, the island density 

decreases as temperature increases. Contrary to expectations, however, the island density 

at 800 "C for the high pressure data (Fig. 2.4a-d) is noticeably lower than that for the low 

pressure data (Fig. 2.4e-h). This may be due to a change in sample preparation 

conditions, since these samples were prepared four months apart. The average island 
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height increases with temperature from 1-2 nm at 750 O C  to -2 nm at 800 OC. With 

respect to island shape, at the higher temperatures the islands develop relatively well- 

defined edges along the three-fold symmetry directions of the (1 11) surface. 

2.3 O2 Etching of Si(113) 

Etching of the Si(113) surface is more similar to that of Si(ll1) than Si(001). As 

shown in Figs. 2.6 and 2.7, there is inhomogeneous island nucleation at lower 

temperatures and a relatively uniform island density at higher temperatures. It should be 

noted that the surface morphologies for the two different pressure conditions shown in 

Fig. 2.6 do not appear as similar as for the (001) and (1 11) data. Unlike for the low-index 

surfaces, the Si(113) data has been taken from a variety of sample runs that extend over a 

period over six months. Regardless, as with the previous surfaces, the island density 

decreases and island size increases as the temperature increases. In the case of Si(113), 

however, the island shape is anisotropic at the higher temperatures. This behavior reflects 

the anisotropic nature of the underlying surface. Extended etching produces finger-like 

islands with straight edges along the [i 101 direction, which is the row direction of the 

Si(113)3x2 surface reconstruction. Prior STM studies have shown that some of the well- 

defined edges correspond to short planes of the nearby (337) orientation. Although the 

island morphology on Si(113) at higher temperatures is not very similar to (001) or (1 1 I), 

the Si(113) surface remains planar under extended etching, just as is the case for the low- 

index surfaces. 
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2.4 Chapter 2 Figures 

Morphologies after Extended Etching (200 L) 

STABLE: Flat + Islands 

Fig. 2.1: Schematic of silicon orientations with those surfaces stable to oxygen etching 
highlighted: Si(001), Si(113), and Si(ll1). 
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Fig. 2.2: AFM images (2x2 pm2) of 200 L OzISi(001) as a function of temperature at 
(a-d) 3.3 x 1 o - ~  Torr and (e-h) 1.5 x 1 o - ~  TOIT. 
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Fig. 2.3: AFM images (5x5 p.m2) of 200 L 02/Si(001) as a function of temperature at 
(a-d) 3.3 x 1 o - ~  Torr and (e-h) 1.5 x 1 o - ~  Torr. 
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Fig. 2.4: AFM images (2x2 pm2) of 200 L Oa/Si(l 1 1) as a function of temper 
(a-d) 3.3 x 1 o - ~  Tom and (e-h) 1 1.5 1 o - ~  TOIT. 
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Fig. 2.5: AFM images (5x5 pn2) of 200 L 02/Si(l 11) as a function of temperature at 
(a-d) 3.3 x 1 0-7 Torr and (e-h) 1.5 x 1 0-7 Ton. 
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Fig. 2.6: AFM images (2x2 pm2) of 200 L 02/Si(l 13) as a function of temperature at 
(a-d) 3.3 x 1 o - ~  Ton- and (e-h) 1.5 x 1 o - ~  Ton-. 
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Fig. 2.7: AFM images (5x5 pm2) of 200 L Oz/Si(l 13) as a function of temperature at 
(a-d) 3.3 x 1 Torr and (e-h) 1.5 x 1 TOIT. 
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Chapter 3: Oxygen Etching of Unstable Si(5 5 12) and Si(112) Surfaces 

In this chapter, we examine the two surface orientations that are not stable after 

extended oxygen etching: Si(5 5 12) and Si(112). This is not surprising since previous 

studies have shown that metal deposition causes faceting of Si(5 5 12) to more stable 

nearby orientations, and Si(112) does not form a stable, clean surface reconstruction. As 

will be shown, both Si(5 5 12) and Si(112) form row-like, sawtooth structures after 

etching that are primarily composed of more stable (1 11) and (1 13) planes (see Fig. 3.1). 

Again, temperature and pressure influence the resulting surface morphology, with feature 

sizes increasing in size at higher temperatures. 

3.1 O2 Etching of Si(5 5 12) 

Unlike for the stable Si surfaces examined in Chapter 2, the Si(5 5 12) surface 

morphology changes quite dramatically during etching as a function of temperature. The 

initial clean Si(5 5 12) surface forms a stable reconstruction composed of row-like Si 

features. As shown in Fig. 3.2, the etched surface forms islands at lower temperatures 

with enhanced island nucleation at step edges (Fig. 3.2b,e). These step edge islands 

become elongated along the [110] direction at temperatures above 700 OC, extending to 

form "fingers" oriented perpendicular to the steps (Fig. 3 . 2 ~ ~ 0 .  At higher ten~peratures, 

these fingers increase in length and height and lead to the formation of "sawtooth" facets 

that can be microns long (Fig. 3.2d,g,h). As expected, the size of the sawtooth facets 

increases and their density decreases at higher temperatures (compare Fig. 3.2g and 3.2h). 

At 750 OC ( 1 . 5 ~ 1 0 - ~  Torr), the sawtooths have an average width of 30 nm and length of 

600 to 900 nm, and grow in size to -90 nm wide and -1600 nrn long at 800 OC. Cross 

sections of the sawtooths formed at 800 OC are shown in Figs. 3.4 and 3.5 at intermediate 

(200 L) and high (400 L) exposure. At 200 L, some areas with (5 5 12) orientation still 

remain in the areas between sawtooths, which are composed of opposing (1 11) and (1 13) 
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planes. At 400 L, however, only the more stable (1 11) and (1 13) planes exist, indicating 

that the (5 5 12) orientation is not stable against extended oxygen etching. 

3.2 O2 Etching of Si(l12) 

The data presented here for oxygen etching of Si(112) are the first results for this 

system. Consequeiltly, a larger variety of exposure conditions were explored. We 

examined etching at 3 . 3 ~ 1 0 ~ ~  Torr for temperatures from 750 "C to 950 "C and select 

coverages from 100 L to 800 L. This study begins at higher temperatures (750 "C) 

because Si(112) is an unstable surface orientation that forms nanofacets of (11 1) and 

(5 5 12)-like planes. Consequently, data at 750 "C shows island nucleation on nanofacets 

that produces a disordered surface (Fig. 3.6a,f). At 800 "C, the initial nanofacet 

morphology of the clean Si(112) surface is removed and significantly larger sawtooth 

facets dominate the surface. As expected, the size of these sawtooth facets increases and 

their density decreases with increasing temperature (compare Fig. 3.6b,g to 3.6ej). 

Figures 3.7 and 3.8 show the evolution of surface morphology as a function of 

exposure at 800 "C and 850 "C. These data sequences resemble "movies" of the surface 

as a function of time, where higher exposures correspond to longer times. At 800 "C, 

nanofacets of the clean surface are still present at 100 L, with some isolated nucleation of 

larger sawtooth facets commencing. With higher exposures, these sawtooth facets grow 

in size and density until they dominate the surface at 600 L (Fig. 3.7 d,h). At the higher 

temperature of 850 "C, the surface morphology evolves in a similar manner. One 

distinction, however, is that the regions between sawtooth facets appear qualitatively 

different. Figures 3.9 and 3.10 show cross sections of sawtooth structures for these two 

temperature regimes. In both cases, the sawtooths appear to be composed of opposing 

(1 13) and (1 11) planes, similar to sawtooths formed during etching of Si(5 5 12). 

Interestingly, at 800 "C these sawtooths are frequently separated by (1 12)-oriented flat 

regions, whereas at 850 "C they are separated by (5 5 12)-like terraces. This result 
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indicates that the (1 12) surface can be stabilized by etching at 800 OC, but is not stable 

with respect to the nearby (5 5 12) surface at higher temperatures. This result is quite 

interesting because it is the first time a nominally "clean" (112) surface has been 

observed. 
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3.3 Chapter 3 Figures 

Morphologies after Extended Etching (200 L) 

800 "C 
Flat + Islands 

Sawtooth Facets UNSTABLE 
Fig. 3.1: Schematic of Si orientations with those surfaces unstable to oxygen etching 
highlighted: Si(112) and Si(5 5 12). 
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Fig. 3.2: AFM images (2x2 pm2) of 200 L 02/Si(5 5 12) as a h c t i o n  of temperati 
(a-d) 3.3 x 1 o - ~  Torr and (e-h) 1.5 x 1 o - ~  Torr. 
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Fig. 3.3: AFM images (5x5 pm2) of 200 L OzISi(5 5 12) as a function of temperature at 
(a-d) 3.3 x 1 Torr and (e-h) 1.5 x 1 Torr. 
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Si(5 5 12): Intermediate Sawtooth Structure 

L 

Fig. 3.4: Cross-section of "intermediate" sawtooth facets for 02/Si(5 5 12) with 200 L at 
800 "C. 
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Si(5 5 12):Final Sawtooth Structure 

Fig. 3.5: Cross-section of "final" sawtooth facets for 02/Si(5 5 12) with 400 L at 800 O C .  
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Fig. 3.6: (a-e) 2x2 p.m2 and (f-j) 5x5 pm2 AFM images of 200 L 02/Si(l 12) as a 
function of temperature at 3.3 x TOIT. 
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Fig. 3.7: (a-d) 2x2 pm2 and (e-h) 5x5  pm2 AFM images of O2/Si(ll2) as a function of 
oxygen exposure at 3.3 x 1 o - ~  Tom and 800 "C. 
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.3x 1 0-7 Torr 

Fig. 3.8: (a-e) 2x2 pm2 and (f-j 5 x 5  pm2 AFM images of OzlSi(112) system as a 4 function of exposure at 3.3~10- Torr and 850 O C .  
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Si(ll2): Intermediate Sawtooth Structure 

Fig. 3.9: Cross-section of "intermediate" sawtooth facets for 02/Si(l 12) with 200 L at 
800 "C. 
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Si(112): Final Sawtooth Structure 

15 nm Sectio 
\ (1 13) I - 

~n Analysis 

Fig. 3.10: Cross-section of "final" sawtooth facets for Oz/Si(l 12) with 400 L at 850 "C. 
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APPENDIX A: AFM Images of Etched Si Surfaces (200 L) 'I 'I 
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